Chinese Journal of Chemical Engineering
Chin.J.Chem.Eng.  2015, Vol. 23 Issue (7): 1102-1109    DOI: 10.1016/j.cjche.2015.04.018
SEPARATION SCIENCE AND ENGINEERING Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol
Xianfu Chen, Gongping Liu, Hanyu Zhang, Yiqun Fan
Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
 Download: PDF (4399 KB)   HTML (1 KB)  Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract As a newkind of 2D nanomaterials, graphene oxide (GO)with 2-4 layerswas fabricated viaamodified Hummers method and used for the preparation of pervaporation (PV) membranes. Such GO membranes were prepared via a facile vacuum-assisted method on anodic aluminiumoxide disks and applied for the dehydration of butanol. To obtain GO membranes with high performance, effects of pre-treatments, including high-speed centrifugal treatment of GO dispersion and thermal treatment of GO membranes, were investigated. In addition, effects of operation conditions on the performance of GO membranes in the PV process and the stability of GO membranes were also studied. It is of benefit to improve the selectivity of GO membrane by pre-treatment that centrifuges the GO dispersion with 10000 r·min-1 for 40 min, which could purify the GO dispersion by removing the large size GO sheets. As prepared GO membrane showed high separation performance for the butanol/water system. The separation factor was 230, and the permeability was as high as 3.1 kg·m-2·h-1 when the PV temperature was 50 ℃ and the water content in feed was 10% (by mass). Meanwhile, the membrane still showed good stability for the dehydration of butanol after running for 1800 min in the PV process. GO membranes are suitable candidates for butanol dehydration via PV process.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Xianfu Chen
Gongping Liu
Hanyu Zhang
Yiqun Fan
Key wordsGraphene oxide   Membrane   Pervaporation   Dehydration   Butanol     
Received: 2014-11-18; Published: 2015-04-18

Supported by the National High Technical Research Program of China (2012AA03A606), the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (12KJA530001) and the Innovative Research Team Program by the Ministry of Education of China (IRT13070).

Corresponding Authors: Yiqun Fan   
Cite this article:   
Xianfu Chen,Gongping Liu,Hanyu Zhang et al. Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol[J]. Chin.J.Chem.Eng., 2015, 23(7): 1102-1109.
URL:     or
[1] J. Kim, L.J. Cote, J.X. Huang, Two dimensional soft material: New faces of graphene oxide, Acc. Chem. Res. 45 (8) (2012) 1356-1364.

[2] B.X. Mi, Graphene oxide membranes for ionic and molecular sieving, Science 343 (6172) (2014) 740-742.

[3] H. Zarrin, D. Higgins, Y. Jun, Z.W. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem. C 115 (42) (2011) 20774-20781.

[4] H.Y. Liu, P.X. Xi, G.Q. Xie, Y.J. Shi, F.P. Hou, L. Huang, F.J. Chen, Z.Z. Zeng, C.W. Shao, J. Wang, Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization, J. Phys. Chem. C 116 (5) (2012) 3334-3341.

[5] M. Hu, B.X. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol. 47 (8) (2013) 3715-3723.

[6] W. Choi, J. Choi, J. Bang, J.H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications, ACS Appl. Mater. Interfaces 5 (23) (2013) 12510-12519.

[7] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future, Prog. Mater. Sci. 56 (8) (2011) 1178-1271.

[8] N.X.Wang, S.L. Ji, G.J. Zhang, J. Li, L.Wang, Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation, Chem. Eng. J. 213 (2012) 318-329.

[9] K. Hu, M.K. Gupta, D.D. Kulkarni, V.V. Tsukruk, Ultra-robust graphene oxide-silk fibroin nanocomposite membranes, Adv. Mater. 25 (16) (2013) 2301-2307.

[10] B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane, Desalination 313 (2013) 199-207.

[11] B.G. Choi, Y.S. Huh, Y.C. Park, D.H. Jung, W.H. Hong, H. Park, Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets, Carbon 50 (15) (2012) 5395-5402.

[12] H.Y. Zhao, L.G.Wu, Z.J. Zhou, L. Zhang, H.L. Chen, Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide, PCCP 15 (23) (2013) 9084-9092.

[13] H.W. Kim, H.W. Yoon, S.M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, J.Y. Choi, H.B. Park, Selective gas transport through few-layered graphene and graphene oxide membranes, Science 342 (6154) (2013) 91-95.

[14] D.W. Boukhvalov, M.I. Katsnelson, Y.W. Son, Origin of anomalous water permeation through graphene oxide membrane, Nano Lett. 13 (8) (2013) 3930-3935.

[15] H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, X. Peng, Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes, Nat. Commun. 4 (2013) 2979-2987.

[16] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335 (6067) (2012) 442-444.

[17] J. Lee, H.R. Chae, Y.J.Won, K. Lee, C.H. Lee, H.H. Lee, I.C. Kim, J.M. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment, J. Membr. Sci. 448 (2013) 223-230.

[18] H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H.J. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation, Science 342 (6154) (2013) 95-98.

[19] C.Z. Sun, M.S.H. Boutilier, H. Au, P. Poesio, B. Bai, R. Karnik, N.G. Hadjiconstantinou, Mechanisms of molecular permeation through nanoporous graphene membranes, Langmuir 30 (2) (2013) 675-682.

[20] M.X. Shan, Q.Z. Xue, N.N. Jing, C.C. Ling, T. Zhang, Z.F. Yan, J.T. Zheng, Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes, Nanoscale 4 (17) (2012) 5477-5482.

[21] W.S. Hung, Q.F. An, M. De Guzman, H.Y. Lin, S.H. Huang, W.R. Liu, C.C. Hu, K.R. Lee, J.Y. Lai, Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide, Carbon 68 (2014) 670-677.

[22] T.M. Yeh, Z. Wang, D. Mahajan, B.S. Hsiao, B. Chu, High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers, J. Mater. Chem. A 1 (41) (2013) 12998-13003.

[23] K. Huang, G.P. Liu, Y.Y. Lou, Z.Y. Dong, J. Shen,W.Q. Jin, A graphene oxide membrane with highly selective molecular separation of aqueous organic solution, Angew. Chem. Int. Ed. 53 (27) (2014) 6929-6932.

[24] Y.P. Tang, D.R. Paul, T.S. Chung, Free-standing graphene oxide thin films assembled by a pressurized ultrafiltrationmethod for dehydration of ethanol, J. Membr. Sci. 458 (2014) 199-208.

[25] Y.Y. Lou, G.P. Liu, S.N. Liu, J. Shen, W.Q. Jin, A facile way to prepare ceramicsupported graphene oxide composite membrane via silane-graft modification, Appl. Surf. Sci. 307 (2014) 631-637.

[26] M. Hu, B.X. Mi, Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction, J. Membr. Sci. 469 (2014) 80-87.

[27] H.B. Huang, Y.Y. Mao, Y.L. Ying, Y. Liu, L.W. Sun, X.S. Peng, Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes, Chem. Commun. 49 (53) (2013) 5963-5965.

[28] X. Huang, Z.Y. Yin, S.X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, F. Boey, H. Zhang, Graphene-based materials: Synthesis, characterization, properties, and applications, Small 7 (14) (2011) 1876-1902.

[29] G.P. Liu, W. Wei, W.Q. Jin, Pervaporation membranes for biobutanol production, ACS Sustainable Chem. Eng. 2 (4) (2014) 546-560.

[30] T.A. Peters, C.H.S. Poeth, N.E. Benes, H. Buijs, F.F. Vercauteren, J.T.F. Keurentjes, Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity; Contradicting the flux-selectivity paradigm, J. Membr. Sci. 276 (1-2) (2006) 42-50.

[31] Y.X. Zhu, S.S. Xia, G.P. Liu, W.Q. Jin, Preparation of ceramic-supported poly(vinyl alcohol)-chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures, J. Membr. Sci. 349 (1-2) (2010) 341-348.

[32] T. Gallego-Lizon, E. Edwards, G. Lobiundo, L.F. dos Santos, Dehydration of water/tbutanol mixtures by pervaporation: Comparative study of commercially available polymeric, microporous silica and zeolite membranes, J. Membr. Sci. 197 (1-2) (2002) 309-319.

[33] H.M. van Veen, Y.C. van Delft, C.W.R. Engelen, P. Pex, Dewatering of organics by pervaporation with silica membranes, Sep. Purif. Technol. 22-3 (1-3) (2001) 361-366.

[34] H.L. Castricum, A. Sah, R. Kreiter, D.H.A. Blank, J.F. Vente, J.E. ten Elshof, Hybrid ceramic nanosieves: Stabilizing nanopores with organic links, Chem. Commun. 9 (2008) 1103-1105.

[35] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater. 23 (29) (2013) 3693-3700.

[36] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2) (2008) 101-105.

[37] X.J. Shu, X.R. Wang, Q.Q. Kong, X.H. Gu, N.P. Xu, High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water, Ind. Eng. Chem. Res. 51 (37) (2012) 12073-12080.

[38] D.P. Suhas, A.V. Raghu, H.M. Jeong, T.M. Aminabhavi, Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique, RSC Adv. 3 (38) (2013) 17120-17130.

[39] D.R. Dreyer, S.Murali, Y. Zhu, R.S. Ruoff, C.W. Bielawski, Reduction of graphite oxide using alcohols, J. Mater. Chem. 21 (10) (2011) 3443.

[40] A. Buchsteiner, A. Lerf, J. Pieper,Water dynamics in graphite oxide investigated with neutron scattering, J. Phys. Chem. B 110 (45) (2006) 22328-22338.

[41] J. Zhu, C.M. Andres, J. Xu, A. Ramamoorthy, T. Tsotsis, N.A. Kotov, Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies, ACS Nano 6 (9) (2012) 8357-8365.

[42] K.S. Andrikopoulos, G. Bounos, D. Tasis, L. Sygellou, V. Drakopoulos, G.A. Voyiatzis, The effect of thermal reduction on the water vapor permeation in graphene oxide membranes, Adv. Mater. Interfaces 1 (8) (2014) 1-8.

[43] J.F. Shen, Y.Z. Hu, M. Shi, X. Lu, C. Qin, C. Li, M.X. Ye, Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets, Chem. Mater. 21 (2009) 3514-3520.

[44] R.L. Liu, G. Arabale, J. Kim, K. Sun, Y.W. Lee, C.K. Ryu, C.G. Lee, Graphene oxidemembrane for liquid phase organic molecular separation, Carbon 77 (2014) 933-938.

[45] W.F. Guo, T.S. Chung, Study and characterization of the hysteresis behavior of polyimide membranes in the thermal cycle process of pervaporation separation, J. Membr. Sci. 253 (1-2) (2005) 13-22.

[46] Y. Wang, S.H. Goh, T.S. Chung, P. Na, Polyamide-imide/polyetherimide dual-layer hollow fiber membranes for pervaporation dehydration of C1-C4 alcohols, J. Membr. Sci. 326 (1) (2009) 222-233.

[47] G. Zhang, X. Song, S. Ji, N.Wang, Z. Liu, Self-assembly of inner skin hollow fiber polyelectrolyte multilayer membranes by a dynamic negative pressure layer-by-layer technique, J. Membr. Sci. 325 (1) (2008) 109-116.

[48] G.M. Shi, T. Yang, T.S. Chung, Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols, J. Membr. Sci. 415 (2012) 577-586.

[49] Y.K. Ong, H. Wang, T.S. Chung, A prospective study on the application of thermally rearranged acetate-containing polyimide membranes in dehydration of biofuels via pervaporation, Chem. Eng. Sci. 79 (2012) 41-53.

[50] S. Biduru, S. Sridhar, G.S. Murthy, S. Mayor, Pervaporation of tertiary butanol/water mixtures through chitosan membranes cross-linked with toluylene diisocyanate, J. Chem. Technol. Biotechnol. 80 (12) (2005) 1416-1424.

[51] T. Gallego-Lizon, E. Edwards, G. Lobiundo, L. Freitas dos Santos, Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes, J. Membr. Sci. 197 (1-2) (2002) 309-319.
[1] Shuying Chen, Rui Tu, Jun Li, Xiaohua Lu. Pd catalysts supported on rGO-TiO2 composites for direct synthesis of H2O2: Modification of Pd2+/Pd0 ratio and hydrophilic property[J]. Chin.J.Chem.Eng., 2018, 26(3): 534-539.
[2] R. Kamatchi, G. Kumaresan. Investigations on pool boiling critical heat flux, transient characteristics and bonding strength of heater wire with aqua based reduced graphene oxide nanofluids[J]. Chin.J.Chem.Eng., 2018, 26(3): 445-454.
[3] Norhaziyana Hamzah, Choe Peng Leo. Fouling evaluation on membrane distillation used for reducing solvent in polyphenol rich propolis extract[J]. Chin.J.Chem.Eng., 2018, 26(3): 477-483.
[4] Xiaoli Ding, Xu Li, Hongyong Zhao, Ran Wang, Runqing Zhao, Hong Li, Yuzhong Zhang. Partial pore blockage and polymer chain rigidification phenomena in PEO/ZIF-8 mixed matrix membranes synthesized by in situ polymerization[J]. Chin.J.Chem.Eng., 2018, 26(3): 501-508.
[5] Liangliang Zhang, Aolan Wang, Nan Zhu, Baochang Sun, Yan Liang, Wei Wu. Synthesis of butterfly-like BiVO4/RGO nanocomposites and their photocatalytic activities[J]. Chin.J.Chem.Eng., 2018, 26(3): 667-674.
[6] Kailiang Zeng, Jie Zhou, Zhaoliang Cui, Yue Zhou, Chuan Shi, Xiaozu Wang, Liyue Zhou, Xiaobin Ding, Zhaohui Wang, Enrico Drioli. Insight into fouling behavior of poly(vinylidene fluoride) (PVDF) hollow fiber membranes caused by dextran with different pore size distributions[J]. Chin.J.Chem.Eng., 2018, 26(2): 268-277.
[7] Huanru Ding, Weirui Zhao, Changjiang Lü, Jun Huang, Sheng Hu, Shanjing Yao, Lehe Mei, Jinbo Wang, Jiaqi Mei. Biosynthesis of 4-hydroxyphenylpyruvic acid from L-tyrosine using recombinant Escherichia coli cells expressing membrane bound L-amino acid deaminase[J]. Chin.J.Chem.Eng., 2018, 26(2): 380-385.
[8] Huating Song, Yibin Wei, Chenying Wang, Shuaifei Zhao, Hong Qi. Tuning sol size to optimize organosilica membranes for gas separation[J]. Chin.J.Chem.Eng., 2018, 26(1): 53-59.
[9] Hong-Xia Liu, Naixin Wang, Cui Zhao, Shulan Ji, Jian-Rong Li. Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures-A review[J]. Chin.J.Chem.Eng., 2018, 26(1): 1-16.
[10] Pouria Abbasszadeh Gamali, Abbass Kazemi, Reza Zadmard, Morteza Jalali Anjareghi, Azadeh Rezakhani, Reza Rahighi, Mohammad Madani. Distinguished discriminatory separation of CO2 from its methane-containing gas mixture via PEBAX mixed matrix membrane[J]. Chin.J.Chem.Eng., 2018, 26(1): 73-80.
[11] Jiangnan Shen, Zhendong Hou, Congjie Gao. Using bipolar membrane electrodialysis to synthesize di-quaternary ammonium hydroxide and optimization design by response surface methodology[J]. , 2017, 25(9): 1176-1181.
[12] Longwei Xu, Long Xiang, Chongqing Wang, Jian Yu, Lixiong Zhang, Yichang Pan. Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals[J]. , 2017, 25(7): 882-891.
[13] Huiqi Xie, Yanying Wei, Haihui Wang. Modeling of U-shaped Ba0.5Sr0.5Co0.8Fe0.2O3-δ hollow-fiber membrane for oxygen permeation[J]. , 2017, 25(7): 892-897.
[14] Kang Huang, Jianwei Yuan, Guoshun Shen, Gongping Liu, Wanqin Jin. Graphene oxide membranes supported on the ceramic hollow fibre for efficient H2 recovery[J]. , 2017, 25(6): 752-759.
[15] Xuerui Wang, Ji Jiang, Dezhong Liu, Youquan Xue, Chun Zhang, Xuehong Gu. Evaluation of hollow fiber T-type zeolite membrane modules for ethanol dehydration[J]. , 2017, 25(5): 581-586.
Chinese Journal of Chemical Engineering
CopyRight © 2012 Chinese Journal of Chemical Engineering   All Rights Reserved ©京ICP备12046843号-5

京公网安备 11010102001993号

Tel. 010-64519487, 010-64519488