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Abstract  Chemical processes are complex, for which traditional neural network models usually can not lead to 
satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy 
of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural 
networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this 
study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, 
and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) 
is proposed, in which the error vector of each network can offset that of the other networks by training the compo-
nent networks orderly. Thus the component networks have large diversity. Experiments and comparisons over stan-
dard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that 
EVSNE performs better in generalization ability.  
Keywords  high-density polyethylene modeling, selective neural network ensemble, diversity definition, error 
vectorization 

1  INTRODUCTION 

Actual chemical processes usually present char-
acteristics of nonlinearity and uncertainty, which make 
the modeling very complex, so that traditional neural 
network models can not lead to satisfactory accuracy. 
Neural network ensemble method is usually used in 
these processes to improve the generalization accuracy 
of networks. Hansen and Salamon initiate the neural 
network ensemble (NNE) in 1990, which trains a fi-
nite number of networks and combines the results to-
gether [1, 2]. The generalization accuracy of NNE de-
pends on the accuracy of component networks and the 
diversity among them [3]. Therefore, how to enlarge 
the diversity among component networks is a main 
field in NNE research [4, 5]. Bagging [6] is a prevailing 
NNE training method based on bootstrap sampling [7], 
which trains the component networks with different 
sub-sets. Zhou et al [8, 9] proposed selective ensemble, 
i.e., selecting several of the component networks to 
make the ensemble (SEL-NNE) performs better than 
combining all of them (ALL-NNE). In general, a se-
lective neural network includes training a number of 
networks and selecting some of them to combine the 
ensemble. Many researchers started to work on selec-
tive ensemble [10-13]. 

Since there is no unified definition of diversity 
among component networks, it is not convenient to 
select. Also, it is difficult to improve the accuracy of 
ensemble through selection when the diversities of 
available networks are all small, even if the selection 
method is good enough. Thus training the component 
networks with large diversity is the promise. However, 

the component networks trained by traditional method 
such as Bagging are independent, and the component 
networks may remain large correlation, which will lead 
to small diversity. 

Aiming at the above problems, an error vectoriza-
tion based selective neural network ensemble (EVSNE) 
method is proposed in this study. This method can 
train component networks with large diversities, since 
the output error vector of each component network can 
offset that of the other networks. Standard data sets are 
used to prove the improvement on the generalization 
accuracy of neural networks (NNs). Finally, the method 
is used in HDPE (high-density polyethylene) process. 

2  ERROR VECTORIZATION 

2.1  Definition of diversity 

For definition of diversity, some methods consider 
the training data sets, and others focus on the inner 
structures of networks. Yang et al. [14] proposed the 
definition based on output curve that provides an ef-
fective way for diversity calculation, but the relation-
ship of component network error is not considered. 

In this study, the diversity is directly based on the 
errors of NNs. For convenience of discussion, only 
single output network and simple average is considered 
here. m networks are tested with a set of data includ-
ing n instances. The error of a network is vectorized. 
All the errors of networks are considered as a high 
dimension vector, and 1 2( , , , )i i i ine e e= "e  represents 
the error vector of the ith network. The output error of 
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ensemble on the kth testing data and the ensemble 
error vector are respectively  
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With vectorizing, the modulus of the vector is 
proportional to the output error, and the direction of 
the vector reflects the error distribution. The direction 
of the vector is the main factor in judging the diversity. 

The error of the ith component neural network 
and the average error are respectively 
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where ie  is the modulus of ie . It is assumed that 
there are only two networks in the ensemble, so the 
output error E of the ensemble is   
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Since 2 22 i j i j⋅ +≤e e e e , E E≤ . The error of 

ensemble depends on the accuracy of component net-
works and their diversities. In Eq. (4), ie  and je  

reflect the accuracy of component networks, and the ratio 
of i j⋅e e  and i je e  reflects the diversity of the ith and 

jth networks. Thus the similarity coefficient αij and the 
diversity coefficient βij can be defined respectively as 
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1ij ijβ α= −                 (6) 

Parameter βij is continuous in the interval (0, 2). Eq. 
(4) indicates that if the accuracy of each network stays 
the same, the ensemble accuracy increases with βij. Eq. 
(6) is also effective in the general form of ensemble 
output error  
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2.2  Size of NNE 

To some extent, the size of ensemble will influ-
ence its accuracy. A suitable size for an ensemble can 
ensure the accuracy and save computation time. For 
Eq. (7), with similar accuracies of all component net-
works and the same weights of networks, that is 

2 1 1,( ), 1/ ,
( 1)

m m

ij
i j j im

i inE w m
n n

β
β = = ≠≈ = =

−

∑ ∑
e    (8) 

( ) ( )

( )

/ ( 1) (1 ) /

( 1) /

m m

m

E E m m E m

E m E m

β

β

= + − −

= − −     (9) 

where ( )mE  and ( )mβ  are respectively the output error 
and average diversity of ensemble that includes m 
component networks. With the assumption that 

( ) ( 1)m mβ β β+≈ =             (10) 
when the number of networks increases from m to 

1m + , the reduction of E is 
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Equation (11) indicates that ( )mEΔ  will be large 
when the number of component networks is small, so 
the ensemble accuracy can be enhanced greatly by in-
creasing the number of networks. For larger m, ( )mEΔ  
is smaller. When 1β <  and 10m = , 
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When the reduction is small enough, it can be ignored. 
Adding more networks to the ensemble can hardly 
increase the accuracy when the number of networks is 
large enough. Selecting ten or so networks will lead to 
good results. 

3  EVSNE METHOD 

Selecting several networks with large diversity to 
form an ensemble may increase the accuracy of the 
ensemble, but if the diversities among all the trained 
networks are small, it will be difficult to improve the 
accuracy by selecting. Thus the premise is to train the 
networks with large diversities. In this study, based on 
the error vectorization, EVSNE method is proposed.  

In Section 2, the direction of vector reflects the 
error distribution. When an NN is tested with a set in-
cluding n instances, the error vector is n-dimensional. 
Now the diversity is expressed as the difference of 
directions of the vectors. If the diversity of error vectors 
is larger, more components of the error vectors can be 
offset so that the accuracy of ensemble can be improved 
greatly. Thus the aim of ensemble is to train the com-
ponent networks, with which the error vectors can offset 
others.  

In EVSNE, the component networks are back 
propagation (BP) networks. The networks are trained 
one after another and the trained networks constitute 
partial ensemble. Since the direction of the error vec-
tor of next network is opposite to that of the previous 
partial ensemble, a penalty item λ is added to the train-
ing error in order to change the current vector direction 
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and then offset the error of the partial ensemble. For 
the ith network, the training error is altered as follows 

( )( ) ( ) (1 )p p
i i iλ λ λ= − + − = + − +e a d a d a a d  (13) 

For the kth training instance of the ith network, the 
training error is 

( )( ) ( ) (1 )p p
ik ik k k ik kk ke a d a d a a dλ λ λ= − + − = + − +  

(14) 
where ika  is the actual output, ike  is the error, kd  is 

the desired output, ( )p
ka  is the actual output of previous 

partial ensemble, λ is the coefficient of penalty item, 

ia , ie , d, and ( )pa  are the vector of the varieties. 
Then, the square error of BP is altered after add-

ing the penalty item λ, 
22 ( )1/ 2 1/ 2 (1 )p

ik ik ik kkE e a a dλ λ⎡ ⎤= = + − +⎣ ⎦   (15) 

Eq. (15) indicates that the aim of training BP is not 
only to decrease the error of the current network, but 
also to offset the error of previous partial ensemble. 
That is exactly the aim of ensemble. Thus the compo-
nent networks trained by EVSNE have larger diversi-
ties, for the output error vector of each component 
network can offset that of the former partial ensemble. 
As a result, the error of ensemble will be decreased.  

When the number of networks in the ensemble 
reaches the set value, the training will stop. According 
to the principle of selective ensemble, selecting several 
of the available networks may be better than selecting 
all of them. With the diversity definition in Eq. (6), the 
networks with large diversities can be selected easily. 

After training all the networks, the diversities of 
each two networks are calculated and an m×m matrix 
is obtained. In Section 2.2, it concludes that selecting 
ten or so networks will lead to good results. Then 
traverse the matrix and compare the average diversity 
of each 10 networks. Finally, 10 networks with larger 
diversities are selected to form the selective ensemble. 
Here all the component networks have equal weight 
(simple average) [3]. The steps of EVSNE are shown 
in Fig. 1. 

4  EXPERIMENTAL 

4.1  Experimental data 

Three classical data sets for regression are used 
in the experiment. The data sets are divided into 
training sets and testing sets. And the validation sets 

used for selecting component networks are bootstrap 
sampled from their training sets, which is normally 
half the size of training sets. The parameters of the 
data sets are shown in Table 1. The housing and con-
crete data sets are from UCI machine learning reposi-
tory, and the freidman#1 data sets are generated from 
the equations as follows. 
Freidman:  

2
1 2 3 4 510sin( ) 20( 0.5) 10 5t x x x x x ε= π + − + + +  

[0,1] [0,1]ix U Nε∼ ∼  
where [0, ]U x  stands for a uniform distribution whose 
interval is 0 to x. 

Table 1  Data sets 

Data sets Variable number 
(input/output) 

Total sample 
(training/testing) 

housing 13/1 506 (380/126) 

concrete 8/1 1030 (800/230) 

Freidman#1 5/1 1400 (800/600) 

4.2  Experimental results 

In this experiment, BP network is used as the 
component network. The number of hidden layer node 
is 9, the learning efficiency and the momentum item 
coefficient are 0.5 and 0.3, respectively, and each 
network is trained for 2000 times. 

Firstly, 25 BP neural networks are trained by 
EVSNE. Secondly, some instances are bootstrap sam-
pled from the training set as the validation set, which 
is half the size of training set. Thirdly, the error vector 
and the diversity matrix are calculated. Finally, 10 
networks with largest diversity are selected to make 
up the ensemble. The generalization error is measured 
as relative error 
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where ka  is the actual output, kd  is the desired output, 
and n is the number of instances. In order to exclude 
the influence of occasionality, three experiments are 
taken independently. 

4.2.1  Selection of penalty item 
The value of penalty item λ is crucial to EVSNE. 

If it is too small, the offsetting effect will be weak, so 

1 Train the1st network normally
Calculate the output error of partial ensemble

2 for 1
Train a new network by the improved function [Eq. (15)] and add it to the partial ensemble
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Figure 1  Steps of EVSNE method 
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that the diversities are small. If it is too large, the errors 
of the component networks will be large, resulting in 
large ensemble error. The relationship between the 
normalized generalization mean square error of 
SEL-NNE and the penalty item λ is shown in Fig. 2, 
in which λ varies from 0.1 to 0.9. The overall trends 
of generalization error for different data sets are nearly 
the same with the increase of penalty item λ. When 
the penalty item λ varies between 0.5 and 0.6, EVSNE 
method performs best. In the following sections, all 
the experiments are carried out for λ of 0.5. 

4.2.2  Generalization result 
In this section, the generalization result of Bag-

ging, DWSEN (diversity measurement using weights 
based selective ensemble) [10] and EVSNE are compared. 
Table 2 shows the generalization relative error of the 
housing, concrete and freidman#1 data sets. EVSNE 

has better generalization ability than Bagging or DWSEN. 
It is proved that the networks trained by EVSNE have 
larger diversities than by Bagging or DWSEN. The 
accuracies of ensemble are all improved after selecting, 
which proves the feasibility of the selecting method. 

5  APPLICATION EXAMPLE 

5.1  HDPE process 

Actual chemical processes are complex, so neural 
network ensemble is usually used. HDPE (high-density 
polyethylene) cascade reaction [15-18] is a polymeri-
zation process from high-purity ethylene monomer to 
high-density polyethylene under the condition of 
low-pressure and hexane slurry. It is composed of two 
reactors connected by flash tank in series, post reactor, 

Table 2  Testing results of the three methods on standard data sets 

Housing  Concrete Freidman#1  
Generalization error/% Standard deviation  Generalization error/% Standard deviation Generalization error/% Standard deviation

Bagging 12.91 0.144  16.57 0.255 10.22 0.122 
DWSEN 11.25 0.113  13.25 0.197 9.44 0.092 
EVSNE 10.31 0.137  12.42 0.189 7.38 0.098 

 
Figure 2  Effect of penalty item λ on three data sets 

 
Figure 3  Flowchart of HDPE cascade reaction 
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and recycle unit, the flowchart of which is shown in 
Fig. 3. The hexane solvent is added into reactors 1 and 2 
under certain temperature and pressure. Hydrogen and 
high-purity ethylene are mixed with dehydration and 
impurity removal, and then are collected into reactors. 
Catalyst and co-catalyst are stirred at certain ratio, and 
then injected to the reactors 1 and 2 separately. With 
regulating the feed flow, controlling the ratio of hy-
drogen to ethylene, and using the effect of catalyst, 
slurry polymerization is carried out in the hexane sol-
vent system. The heat of polymerization is removed in 
the form of the latent heat of vaporization of hexane 
solvent, cooling water in the jacket of reactors, and 
external reflux of slurry.  

In reactor 1, the ratio of hydrogen and ethylene is 
large so that the melt index of the product is high. The 
product from reactor 1 is flash-evaporated to recycle 
some micro-molecule hydrocarbon and is collected 
into reactor 2 for further polymerization. In an actual 
process, the melt index of reactor 1 is an important 
quality index. From the technical mechanism and 
production experiences, the melt index of reactor 1 
mainly depends on seven variables, i.e., the flow rates 
of catalyst, hydrogen and ethylene, reaction tempera-
ture and pressure, ethylene pressure, and pressure ratio 
of hydrogen and ethylene. Thereby, exploring the rela-
tion between the melt index and process variables is 
crucial to provide effective production guide. 

5.2  Experimental result 

For the process modeling, the seven variables af-
fecting the melt index significantly are selected as the 
input variables, and the melt index is taken as the output 
variable. 1200 instances from the data sets are col-
lected, in which 700 of data are used as the training set 
and the remaining is used as the generalization set. For 
a chemical process the relative error is a crucial factor 
[19, 20], and the relative error and their standard devia-
tion are shown in Table 3. EVSNE can reduce the gen-
eralization error efficiently. Its relative error is smaller 

than that of Bagging or DWSEN, so that EVSNE 
gives the melt index more exactly. The generalization 
curves of Bagging, DWSEN and EVSNE are shown in 
Fig. 4, in which only the first 50 samples are used for 
clearness, and all the instances are denormalized from 
(0, 1) to the real value. The generalization curve of 
EVSNE is more close to the actual value than that of 
Bagging or DWSEN, so EVSNE can provide efficient 
guide for chemical production. 

In order to see the effect of ensemble size, 5-14 
networks are selected separately from ALL-NNE to 
form the SEL-NNE. The relationship between the num-
ber of networks in the SEL-NNE and generalization 
error is shown in Fig. 5. When the number of networks 
in SEL-NNE is larger than ten, the variation of gener-
alization error is small. Thus it is suitable to select ten 
or so networks to form SEL-NNE. 

 
Figure 5  Generalization error on HDPE data set 

6  CONCLUSIONS 

Actual chemical processes are complex, so neural 

 
Figure 4  Generalization output curve on HDPE data set 

 Bagging;  DWSEN;  EVSNE;  desired value 

Table 3  Testing results on HDPE data set 

 Generalization error/% Standard deviation 

Bagging 0.7352 0.0215 

DWSEN 0.5991 0.0187 

EVSNE 0.5103 0.0359 

 



Chin. J. Chem. Eng., Vol. 20, No. 6, December 2012 1147

network ensemble methods are usually used for modeling. 
For the selective neural network ensemble, some prob-
lems have to be solved, e.g., there is no unified defini-
tion among networks and it is difficult to select a 
group of networks with large diversity if the diversi-
ties of available networks are all small. In this study, 
EVSNE is proposed, in which the diversity of net-
works is defined by error vectorization, the number of 
networks in the ensemble is analyzed, the networks 
are trained orderly, and the error of the current network 
can offset the former partial ensemble. The component 
networks trained by EVSNE have large diversities, 
since the error vector of each network can offset that 
of each other. From experiments and comparisons 
over standard data sets and the data sets from HDPE 
cascade reaction process, the diversities of networks 
trained by EVSNE are large, so that the generalization 
capability is enhanced obviously with higher accuracy. 
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